Optimization by Genetic Algorithm
نویسنده
چکیده
The genetic algorithm is Search and optimization techniques that generate solutions to optimization problems using techniques inspired by natural evolution. Optimization is the central to any problem involving whether in engineering or economics. This paper presents experimental results of most important benchmark function i.e dejong function by genetic algorithm. This result shows that genetic algorithm provide more optimal solution. Keywords— Genetic algorithm, Selection, Crossover, Dejong function.
منابع مشابه
Airfoil Shape Optimization with Adaptive Mutation Genetic Algorithm
An efficient method for scattering Genetic Algorithm (GA) individuals in the design space is proposed to accelerate airfoil shape optimization. The method used here is based on the variation of the mutation rate for each gene of the chromosomes by taking feedback from the current population. An adaptive method for airfoil shape parameterization is also applied and its impact on the optimum desi...
متن کاملThe Urban Path Routing Adjustable Optimization by Means of Wavelet Transform and Multistage Genetic Algorithm
This paper introduces the optimization algorithm to improve search rate in urban path routing problems using viral infection and local search in urban environment. This algorithm operates based on two different approaches including wavelet transform and genetic algorithm. The variables proposed by driver such as degree of difficulty and difficulty traffic are of the essence in this technique. W...
متن کاملOptimization of Plastic Injection Molding Process by Combination of Artificial Neural Network and Genetic Algorithm
Injection molding is one of the most important and common plastic formation methods. Combination of modeling tools and optimization algorithms can be used in order to determine optimum process conditions for the injection molding of a special part. Because of the complication of the injection molding process and multiplicity of parameters and their interactive effects on one another, analytical...
متن کاملOptimization of e-Learning Model Using Fuzzy Genetic Algorithm
E-learning model is examined of three major dimensions. And each dimension has a range of indicators that is effective in optimization and modeling, in many optimization problems in the modeling, target function or constraints may change over time that as a result optimization of these problems can also be changed. If any of these undetermined events be considered in the optimization process, t...
متن کاملAn improved genetic algorithm for multidimensional optimization of precedence-constrained production planning and scheduling
Integration of production planning and scheduling is a class of problems commonly found in manufacturing industry. This class of problems associated with precedence constraint has been previously modeled and optimized by the authors, in which, it requires a multidimensional optimization at the same time: what to make, how many to make, where to make and the order to make. It is a combinatorial,...
متن کاملApplication of Genetic Algorithm to Determine Kinetic Parameters of Free Radical Polymerization of Vinyl Acetate by Multi-objective Optimization Technique
A Multi-objective optimization procedure has been developed to determine some kinetic parameters of free radical polymerization of vinyl acetate based on genetic algorithm. For this purpose, mathematical modeling of free radical polymerization of vinyl acetate is carried out first and then selected kinetic parameters are optimized by minimizing objective functions defined from comparing exp...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014